Residual driven online mortar mixed finite element methods and applications

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual-driven online generalized multiscale finite element methods

The construction of local reduced-order models via multiscale basis functions has been an area of active research. In this paper, we propose online multiscale basis functions which are constructed using the offline space and the current residual. Online multiscale basis functions are constructed adaptively in some selected regions based on our error indicators. We derive an error estimator whic...

متن کامل

Balancing domain decomposition for mortar mixed finite element methods

The balancing domain decomposition method for mixed finite elements by Cowsar, Mandel, and Wheeler is extended to the case of mortar mixed finite elements on non-matching multiblock grids. The algorithm involves an iterative solution of a mortar interface problem with one local Dirichlet solve and one local Neumann solve per subdomain on each iteration. A coarse solve is used to guarantee that ...

متن کامل

Interior superconvergence in mortar and non-mortar mixed finite element methods on non-matching grids

We establish interior velocity superconvergence estimates for mixed finite element approximations of second order elliptic problems on non-matching rectangular and quadrilateral grids. Both mortar and non-mortar methods for imposing the interface conditions are considered. In both cases it is shown that a discrete L2-error in the velocity in a compactly contained subdomain away from the interfa...

متن کامل

A Multiscale Mortar Mixed Finite Element Method

We develop multiscale mortar mixed finite element discretizations for second order elliptic equations. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. The polynomial degree of the mortar and subdomain approximation spaces may differ; in fact, the mortar sp...

متن کامل

Singular Function Mortar Finite Element Methods

We consider the Poisson equation with Dirichlet boundary conditions on a polygonal domain with one reentrant corner. We introduce new nonconforming finite element discretizations based on mortar techniques and singular functions. The main idea introduced in this paper is the replacement of cut-off functions by mortar element techniques on the boundary of the domain. As advantages, the new discr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2018

ISSN: 0377-0427

DOI: 10.1016/j.cam.2018.02.032